

 $^{2}/_{4} \times 3 =$

To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$

 $^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

 $\frac{2}{4} \times 3 = 1 \frac{2}{4}$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

Answers

1.

2.

3.

4. _____

5. _____

6. _____

7. _____

8.

9. _____

10. _____

11. _____

1) 4	
$\frac{1}{5} \times 4 = \sqrt{}$	

2)
$$\frac{1}{10} \times 3 =$$

3)
$$\frac{3}{4} \times 5 =$$

4)
$$\frac{1}{3} \times 2 =$$

5)
$$\frac{2}{5} \times 5 =$$

$$6) \quad \frac{4}{6} \times 3 =$$

7)
$$\frac{4}{12} \times 3 =$$

8)
$$\frac{3}{5} \times 2 =$$

9)
$$\frac{10}{12} \times 2 =$$

$$\frac{4}{5} \times 6 =$$

11)
$$\frac{2}{5} \times 4 =$$

12)
$$\frac{3}{6} \times 7 =$$

 $^{2}/_{4} \times 3 =$

To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$

 $^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

$$\frac{2}{4} \times 3 = 1 \frac{2}{4}$$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

2. $\frac{10}{2^3}$

$$\frac{2^{0}}{5}$$

6.
$$\frac{2^{0}}{6}$$

7.
$$1\frac{1}{12}$$

$$\frac{1}{5}$$

$$1^{8}/_{12}$$

$$4\frac{4}{5}$$

$$1\frac{3}{5}$$

$$^{2.}$$
 $3\frac{3}{6}$

1)
$$\frac{4}{5} \times 4 =$$

2)
$$\frac{1}{10} \times 3 =$$

3)
$$\frac{3}{4} \times 5 =$$

4)
$$\frac{1}{3} \times 2 =$$

5)
$$\frac{2}{5} \times 5 =$$

$$6) \quad \frac{4}{6} \times 3 =$$

7)
$$\frac{4}{12} \times 3 =$$

8)
$$\frac{3}{5} \times 2 =$$

9)
$$\frac{10}{12} \times 2 =$$

$$\frac{4}{5} \times 6 =$$

11)
$$\frac{2}{5} \times 4 =$$

12)
$$\frac{3}{6} \times 7 =$$

$$^{2}/_{4} \times 3 =$$

To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$

$\frac{2}{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

$$\frac{2}{4} \times 3 = 1 \frac{2}{4}$$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

<u>Answers</u>

1.

2. _____

3. _____

4. _____

5. _____

6.

7. _____

o. _____

9. _____

10. _____

11. _____

1)
$$\frac{1}{4} \times 2 =$$

2)
$$\frac{1}{5} \times 5 =$$

3)
$$\frac{2}{5} \times 5 =$$

4)
$$\frac{5}{12} \times 4 =$$

5)
$$\frac{7}{12} \times 3 =$$

6)
$$\frac{1}{3} \times 3 =$$

7)
$$\frac{2}{3} \times 6 =$$

8)
$$\frac{2}{3} \times 4 = \bigcirc$$

9)
$$\frac{2}{12} \times 5 =$$

$$\frac{3}{5} \times 7 =$$

11)
$$\frac{6}{8} \times 5 =$$

$$\frac{6}{10} \times 3 = 2$$

 $^{2}/_{4} \times 3 =$

To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$

 $^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

$$\frac{2}{4} \times 3 = 1 \frac{2}{4}$$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

- $\frac{1}{5}$
- $2^{0}/_{5}$
- $_{4.}$ $1\frac{8}{12}$
- $_{5.}$ $1\frac{9}{12}$
- $\frac{1}{3}$
- 7. $\frac{4\sqrt{3}}{3}$
- $\frac{2^{2}}{3}$
- $\frac{10}{12}$
- $4^{1}/_{5}$
- $3\frac{6}{8}$
- $\frac{1}{10}$

$\frac{1}{4} \times 2 =$	\bigcap								
$\frac{}{4} \times 2 = 1$	J	フ	\bigcup'	\bigcup	\bigcup'	\bigcup	\bigcup	\bigcup	\bigcup

- 2) $\frac{1}{5} \times 5 =$
- 3) $\frac{2}{5} \times 5 =$
- 4) $\frac{5}{12} \times 4 =$
- 5) $\frac{7}{12} \times 3 =$
- 6) $\frac{1}{3} \times 3 =$
- 7) $\frac{2}{3} \times 6 =$
- 8) $\frac{2}{3} \times 4 =$
- 9) $\frac{2}{12} \times 5 =$
- 10) $\frac{3}{5} \times 7 =$
- 11) $\frac{6}{8} \times 5 =$
- $\frac{6}{10} \times 3 = 2$

$$^{2}/_{4} \times 3 =$$

To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$

$\frac{2}{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

$$\frac{2}{4} \times 3 = 1 \frac{2}{4}$$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

Answers

1. _____

2. _____

3. _____

4. _____

5. _____

6. _____

7. _____

8.

9. _____

10. _____

11. _____

1)
$$\frac{3}{4} \times 4 =$$

2)
$$\frac{1}{5} \times 3 =$$

3)
$$\frac{2}{8} \times 6 =$$

4)
$$\frac{2}{3} \times 4 = \bigcirc$$

5)
$$\frac{1}{3} \times 6 =$$

$$6) \quad \frac{1}{5} \times 2 =$$

7)
$$\frac{1}{3} \times 4 =$$

8)
$$\frac{1}{3} \times 3 = \bigcirc$$

9)
$$\frac{4}{8} \times 6 =$$

$$\frac{4}{10} \times 6 =$$

11)
$$\frac{2}{10} \times 6 =$$

12)
$$\frac{2}{4} \times 3 =$$

$^{2}/_{4} \times 3 =$

To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$

$^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

$$\frac{2}{4} \times 3 = 1 \frac{2}{4}$$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

2)
$$\frac{1}{5} \times 3 =$$

3)
$$\frac{2}{8} \times 6 =$$

4)
$$\frac{2}{3} \times 4 =$$

5)
$$\frac{1}{3} \times 6 =$$

$$6) \quad \frac{1}{5} \times 2 =$$

7)
$$\frac{1}{3} \times 4 =$$

8)
$$\frac{1}{3} \times 3 =$$

9)
$$\frac{4}{8} \times 6 =$$

10)
$$\frac{4}{10} \times 6 =$$

11)
$$\frac{2}{10} \times 6 =$$

12)
$$\frac{2}{4} \times 3 =$$

$$\frac{2^{0}}{3}$$

$$_{7.}$$
 $1\frac{1}{3}$

$$\frac{1}{3}$$

$$\frac{3}{8}$$

$$2\frac{4}{10}$$

$$1^{2}/_{10}$$

12.
$$1\frac{1}{4}$$

$$^{2}/_{4} \times 3 =$$

To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$

 $^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

 $\frac{2}{4} \times 3 = 1 \frac{2}{4}$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

Answers

1. _____

2. _____

3. _____

4. _____

5. _____

6. _____

7. _____

8.

9. _____

10. _____

11. _____

1)	$\frac{9}{12} \times 7 =$				
	$\frac{1}{12}$ × 7 =				

2)
$$\frac{2}{5} \times 6 =$$

3)
$$\frac{5}{8} \times 4 =$$

4)
$$\frac{3}{12} \times 4 =$$

5)
$$\frac{2}{6} \times 4 =$$

6)
$$\frac{3}{8} \times 3 =$$

7)
$$\frac{3}{12} \times 3 =$$

8)
$$\frac{6}{12} \times 4 =$$

9)
$$\frac{5}{6} \times 6 =$$

10)
$$\frac{8}{10} \times 6 =$$

11)
$$\frac{7}{12} \times 6 =$$

12)
$$\frac{4}{5} \times 2 = 2$$

$^{2}/_{4} \times 3 =$

To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$

$^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

$$\frac{2}{4} \times 3 = 1 \frac{2}{4}$$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

1) $\frac{9}{12} \times 7 =$

2)
$$\frac{2}{5} \times 6 =$$

3)
$$\frac{5}{8} \times 4 =$$

4)
$$\frac{3}{12} \times 4 =$$

5)
$$\frac{2}{6} \times 4 =$$

6)
$$\frac{3}{8} \times 3 =$$

7)
$$\frac{3}{12} \times 3 =$$

8)
$$\frac{6}{12} \times 4 =$$

9)
$$\frac{5}{6} \times 6 =$$

10)
$$\frac{8}{10} \times 6 =$$

11)
$$\frac{7}{12} \times 6 =$$

12)
$$\frac{4}{5} \times 2 = 2$$

1.
$$5\frac{3}{12}$$

$$\frac{2^{2}}{5}$$

$$\frac{2^{4}}{8}$$

$$\frac{1}{1}$$

$$\frac{1\frac{7}{6}}{1}$$

$$\frac{1}{8}$$

$$\frac{2}{12}$$

$$\frac{5}{6}$$

$$4^{8}/_{10}$$

$$3^{6}/_{12}$$

$$1\frac{3}{5}$$

$$^{2}/_{4} \times 3 =$$

To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$

$^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

$$\frac{2}{4} \times 3 = 1 \frac{2}{4}$$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

<u>Answers</u>

- 1. _____
- 2. _____
- 3. _____
- 4. _____
- 5. _____
- 6.
- 7. _____
- 8. _____
- 9. _____
- 10. _____
- 11. _____
- 12. _____

1)
$$\frac{3}{12} \times 4 =$$

- 2) $\frac{2}{3} \times 3 =$
- 3) $\frac{1}{6} \times 5 =$
- 4) $\frac{7}{8} \times 3 =$
- 5) $\frac{1}{5} \times 2 =$
- 6) $\frac{2}{6} \times 3 =$
- 7) $\frac{3}{5} \times 3 =$
- 8) $\frac{6}{10} \times 7 =$
- 9) $\frac{5}{8} \times 6 =$
- $\frac{1}{12} \times 5 =$
- 11) $\frac{2}{3} \times 2 = \bigcirc$
- 12) $\frac{10}{12} \times 3 =$

 $^{2}/_{4} \times 3 =$

To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$

 $^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

 $\frac{2}{4} \times 3 = 1 \frac{2}{4}$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

<u>Answers</u>

$$\frac{2}{2}$$
. $\frac{2}{3}$

$$\frac{5}{6}$$

$$\frac{1}{6}$$

$$\frac{1\frac{4}{5}}{1}$$

$$4^{2}/_{10}$$

$$_{9.}$$
 $3\frac{\%}{8}$

$$1\frac{1}{3}$$

$$2^{6}/_{12}$$

1) 3	-×4=				
12	- × 4 =				

2)
$$\frac{2}{3} \times 3 =$$

3)
$$\frac{1}{6} \times 5 =$$

4)
$$\frac{7}{8} \times 3 =$$

5)
$$\frac{1}{5} \times 2 =$$

6)
$$\frac{2}{6} \times 3 =$$

7)
$$\frac{3}{5} \times 3 =$$

8)
$$\frac{6}{10} \times 7 =$$

9)
$$\frac{5}{8} \times 6 =$$

$$\frac{1}{12} \times 5 =$$

11)
$$\frac{2}{3} \times 2 =$$

12)
$$\frac{10}{12} \times 3 =$$

$$^{2}/_{4} \times 3 =$$

To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$

$\frac{2}{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

$$\frac{2}{4} \times 3 = 1 \frac{2}{4}$$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

Answers

1. _____

2.

3. _____

4. _____

5. _____

6. _____

7. _____

8. _____

9. _____

10. _____

11. _____

1)
$$\frac{5}{10} \times 5 =$$

2)
$$\frac{1}{5} \times 6 =$$

3)
$$\frac{4}{8} \times 2 =$$

4)
$$\frac{2}{6} \times 4 =$$

5)
$$\frac{2}{5} \times 6 =$$

$$\frac{5}{12} \times 3 = 2$$

7)
$$\frac{2}{3} \times 4 =$$

8)
$$\frac{6}{8} \times 6 =$$

9)
$$\frac{3}{8} \times 2 =$$

$$\frac{3}{4} \times 3 = \boxed{ }$$

11)
$$\frac{2}{4} \times 5 =$$

12)
$$\frac{3}{10} \times 5 =$$

 $^{2}/_{4} \times 3 =$

To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$

 $^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

 $\frac{2}{4} \times 3 = 1 \frac{2}{4}$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

$\frac{1^{1}}{2}$

$$\frac{1}{8}$$

4.
$$1\frac{2}{6}$$

$$\frac{1\frac{3}{12}}{1}$$

7.
$$2^{2}/_{3}$$

$$\frac{4^{4}}{8}$$

$$\frac{6}{8}$$

$$\frac{2^{1}}{4}$$

$$\frac{2^{2}}{4}$$

$\frac{5}{10} \times 5 =$				
$\frac{10}{10} \times 5 =$				

2)
$$\frac{1}{5} \times 6 =$$

3)
$$\frac{4}{8} \times 2 =$$

4)
$$\frac{2}{6} \times 4 =$$

5)
$$\frac{2}{5} \times 6 =$$

$$\frac{5}{12} \times 3 = 2$$

7)
$$\frac{2}{3} \times 4 =$$

8)
$$\frac{6}{8} \times 6 =$$

9)
$$\frac{3}{8} \times 2 =$$

10)
$$\frac{3}{4} \times 3 =$$

11)
$$\frac{2}{4} \times 5 =$$

12)
$$\frac{3}{10} \times 5 =$$

 $^{2}/_{4} \times 3 =$

To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$

 $^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

 $\frac{2}{4} \times 3 = 1 \frac{2}{4}$

Answers

1. _____

2. _____

3.

4. _____

5. _____

6. _____

7. _____

· _____

9. _____

10. _____

11. _____

1)	$\frac{5}{12} \times 3 =$				
	$\frac{1}{12} \times 3 =$				

2)
$$\frac{1}{4} \times 3 =$$

3)
$$\frac{2}{5} \times 6 =$$

4)
$$\frac{1}{4} \times 7 =$$

5)
$$\frac{3}{6} \times 6 =$$

6)
$$\frac{9}{10} \times 5 =$$

7)
$$\frac{4}{12} \times 4 =$$

8)
$$\frac{8}{10} \times 6 =$$

9)
$$\frac{4}{12} \times 2 =$$

10)
$$\frac{3}{12} \times 6 =$$

11)
$$\frac{1}{8} \times 3 =$$

12)
$$\frac{2}{3} \times 7 = \bigcirc$$

Answers

Use the visual model to solve each problem.

 $^{2}/_{4} \times 3 =$

To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$

 $^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

 $\frac{2}{4} \times 3 = 1 \frac{2}{4}$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

7.
$$1\frac{4}{12}$$

$$\frac{4^{8}}{10}$$

$$\frac{8}{12}$$

$$1^{6}/_{12}$$

$$\frac{3}{8}$$

$$\frac{4^{2}}{3}$$

1)
$$\frac{5}{12} \times 3 =$$

2)
$$\frac{1}{4} \times 3 =$$

3)
$$\frac{2}{5} \times 6 =$$

4)
$$\frac{1}{4} \times 7 =$$

5)
$$\frac{3}{6} \times 6 =$$

$$6) \quad \frac{9}{10} \times 5 =$$

7)
$$\frac{4}{12} \times 4 =$$

8)
$$\frac{8}{10} \times 6 =$$

9)
$$\frac{4}{12} \times 2 =$$

10)
$$\frac{3}{12} \times 6 =$$

11)
$$\frac{1}{8} \times 3 =$$

12)
$$\frac{2}{3} \times 7 =$$

 $^{2}/_{4} \times 3 =$

To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$

 $\frac{2}{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

 $\frac{2}{4} \times 3 = 1 \frac{2}{4}$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

Answers

1.

2. _____

3. _____

4. _____

5. _____

6.

7. _____

8.

9. _____

10. _____

11. _____

12. _____

1)	× 6 =	\rightarrow
		\mathcal{I}

2)
$$\frac{2}{3} \times 6 =$$

3)
$$\frac{3}{4} \times 2 =$$

4)
$$\frac{4}{6} \times 2 =$$

5)
$$\frac{8}{12} \times 4 =$$

$$6) \quad \frac{8}{10} \times 6 =$$

7)
$$\frac{4}{6} \times 6 =$$

8)
$$\frac{2}{12} \times 7 =$$

9)
$$\frac{1}{5} \times 2 =$$

$$\frac{3}{5} \times 5 =$$

11)
$$\frac{1}{5} \times 3 =$$

12)
$$\frac{1}{4} \times 7 =$$

8

 $^{2}/_{4} \times 3 =$

To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$

 $^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

 $\frac{2}{4} \times 3 = 1 \frac{2}{4}$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

 $\frac{1\frac{7}{6}}{8}$

Answers

 $4^{8}/_{10}$

7. $4\frac{0}{6}$

 $\frac{1}{12}$

 $\frac{2}{5}$

 $\frac{3}{5}$

11. ______5

2. 1/₄

1) 1				
$\frac{1}{3} \times 6 =$				

3)
$$\frac{3}{4} \times 2 =$$

4)
$$\frac{4}{6} \times 2 =$$

5)
$$\frac{8}{12} \times 4 =$$

$$6) \quad \frac{8}{10} \times 6 =$$

7)
$$\frac{4}{6} \times 6 =$$

8)
$$\frac{2}{12} \times 7 =$$

9)
$$\frac{1}{5} \times 2 =$$

10)
$$\frac{3}{5} \times 5 =$$

11)
$$\frac{1}{5} \times 3 =$$

12)
$$\frac{1}{4} \times 7 =$$

$$^{2}/_{4} \times 3 =$$

To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$

 $\frac{2}{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

 $\frac{2}{4} \times 3 = 1 \frac{2}{4}$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

4.

Answers

5. _____

6. _____

7. _____

11.

1)
$$\frac{1}{4} \times 7 =$$

2)
$$\frac{2}{5} \times 4 =$$

3)
$$\frac{2}{5} \times 2 =$$

4)
$$\frac{9}{12} \times 7 =$$

5)
$$\frac{2}{3} \times 5 =$$

$$6) \quad \frac{3}{4} \times 3 =$$

7)
$$\frac{3}{6} \times 5 =$$

8)
$$\frac{2}{6} \times 2 =$$

9)
$$\frac{4}{6} \times 7 =$$

10)
$$\frac{10}{12} \times 2 =$$

11)
$$\frac{5}{8} \times 6 =$$

12)
$$\frac{9}{12} \times 4 =$$

$^{2}/_{4} \times 3 =$

To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$

$^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

$$\frac{2}{4} \times 3 = 1 \frac{2}{4}$$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

$$1\frac{3}{4}$$

$$5^{3}/_{12}$$

$$\frac{3^{1}}{3}$$

6.
$$\frac{2^{1}/_{4}}{}$$

$$\frac{2^{3}}{6}$$

$$\frac{4}{6}$$

$$4\frac{4}{6}$$

$$1^{8}/_{12}$$

$$_{1.}$$
 $3\frac{6}{8}$

$$\frac{3}{12}$$

1)
$$\frac{1}{4} \times 7 =$$

2)
$$\frac{2}{5} \times 4 =$$

3)
$$\frac{2}{5} \times 2 =$$

4)
$$\frac{9}{12} \times 7 =$$

5)
$$\frac{2}{3} \times 5 =$$

6)
$$\frac{3}{4} \times 3 =$$

7)
$$\frac{3}{6} \times 5 =$$

8)
$$\frac{2}{6} \times 2 =$$

9)
$$\frac{4}{6} \times 7 =$$

10)
$$\frac{10}{12} \times 2 =$$

11)
$$\frac{5}{8} \times 6 =$$

12)
$$\frac{9}{12} \times 4 =$$

 $^{2}/_{4} \times 3 =$

To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$

 $\frac{2}{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

 $\frac{2}{4} \times 3 = 1 \frac{2}{4}$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

<u>Answers</u>

1. _____

2.

3. _____

4. _____

5.

6. _____

7. _____

8.

9. _____

10. _____

11. _____

1)	$\frac{8}{10} \times 4 =$				
	$\overline{10} \times 4 =$				

3)
$$\frac{1}{10} \times 7 =$$

4)
$$\frac{7}{12} \times 6 =$$

5)
$$\frac{2}{3} \times 5 =$$

$$6) \quad \frac{2}{5} \times 6 =$$

7)
$$\frac{1}{8} \times 5 =$$

8)
$$\frac{8}{12} \times 6 =$$

9)
$$\frac{3}{4} \times 4 =$$

11)
$$\frac{2}{3} \times 4 = \bigcirc$$

12)
$$\frac{2}{8} \times 6 =$$

 $^{2}/_{4} \times 3 =$

To solve multiplication problems with fractions one strategy is to think of them as addition problems.

For example the problem above is the same as:

$$\frac{2}{4} + \frac{2}{4} + \frac{2}{4}$$

 $^{2}/_{4} \times 3 =$

If we shade in 2/4 on the fractions below 3 times we can see a visual representation of the problem.

 $\frac{2}{4} \times 3 = 1 \frac{2}{4}$

After shading it in we can see why 2/4 three times is equal to 1 whole and $\frac{2}{4}$.

7)
$$\frac{1}{8} \times 5 =$$

8)
$$\frac{8}{12} \times 6 =$$

9)
$$\frac{3}{4} \times 4 =$$

10)
$$\frac{1}{3} \times 3 =$$

11)
$$\frac{2}{3} \times 4 =$$

12)
$$\frac{2}{8} \times 6 =$$

$$\frac{3^{1}}{3}$$

6.
$$\frac{2^{2}/_{5}}{}$$

8.
$$\frac{4^{1/2}}{12}$$

$$_{9.}$$
 $3\frac{0}{4}$

$$1\frac{0}{3}$$

$$\frac{2^2}{3}$$

$$1\frac{1}{8}$$